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Abs~act--Studies of stationary slugs were carried out in order to obtain an understanding of the slug 
regime that exists for gas/liquid flow in a pipeline. A simple model is developed which considers the front 
to be a hydraulic jump. The liquid height in the tail decreases in two stages: an inviscid rapidly changing 
flow; and a slowly changing viscous flow. For a fixed liquid height in front of the stationary slug the first 
stage of the tail is a Benjamin bubble, for which the volumetric flow of the liquid is a minimum value. 
These results provide support for theoretical arguments used previously to develop necessary conditions 
for the existence of a slug regime. 
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I N T R O D U C T I O N  

A stationary hydraulic jump can be formed by introducing a disturbance into a fluid flowing under 
a gate located in a pipe that is inclined downward. The jump occurs downstream of the gate. If 
air is allowed to bleed into the space between the jump and the gate, the jump will reach a stationary 
position and the rate of entrainment of air by the jump will be equal to that in the downstream 
collector, the liquid behind the jump will have a gradually sloping tail and will not fill the whole 
length of pipe behind the jump. The static jump that is formed resembles the rapidly moving slugs 
observed, under certain conditions, when gas and liquid flow in a pipeline and is, therefore, called 
a stationary slug. 

Kennison (1933) discussed the use of a hydraulic jump to remove air from conduits. Kalinske 
& Robertson (1943) explored this application in a systematic study in which they showed how 
stationary slugs can be formed and in which they provided measurements of pressure drop and 
rate of air entrainment. 

The possibility of using the stationary slug as a means to obtain a better understanding of the 
hydrodynamics of moving slugs has recently been pointed out by Jepson (1987a, b), who presented 
measurements of velocity profiles and of void distributions. 

The present paper develops a simple model for a stationary slug and tests it by determining the 
pressure drop, the shape of the tail and the necessary conditions for existence. Of particular 
importance is the analysis of a tail as a composite of a rapidly changing inviscid flow and a slowly 
changing viscous flow. 

The motivation comes from a recent paper by Ruder et al. (1989), which developed necessary 
conditions for the existence of moving slugs, observed in gas liquid flows. They represented the 
tail of a slug by an inviscid Benjamin bubble (Benjamin 1968) which sheds liquid at a volumetric 
rate, given as 

71;9 2 r - ' -  
V = 0.542 - ~ -  x/gD, [1] 

where D is the pipe diameter and g is the acceleration due to gravity. Some direct support for this 
analysis is obtained from an observation by Wallis & Dobson (1973) that Benjamin bubbles form 
directly behind slugs. By using conservation of mass, [1] was employed to define a minimum liquid 
height in front of the slug, hLi , below which slugs cannot exist. By using the notion that the front 
of the slug is a hydraulic jump, a minimum Froude number for slugs to exist was defined. A goal 
of this paper is to explore the accuracy of this model through studies with the much simpler 
stationary slug. 

Experiments with stationary slugs have been conducted in this laboratory by Johnson (1987), 
Burban (1988) and Merrick (1989). The results in this paper were obtained in equipment that used 
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a modified version of designs developed by them. Water flowed in pipes with i.d. = 5.09 and 
2.54 cm, that were inclined downward at an angle of 5 °. The liquid discharged into a separator. 
The pipe was long enough for the liquid layer flowing into the separator to have reached an 
equilibrium height, where the gravitational pull on the liquid is balanced by the resisting stress at 
the wall. 

Pressure measurements confirm that the front of the stationary slug is a hydraulic jump. 
Photographic measurements are used to support the model for the tail that is developed. For a 
fixed hLt (controlled by the gate opening), the minimum liquid volumetric flow for a stationary slug 
is found to agree with [1]. For liquid flows larger than this, the flow immediately behind the slug 
cannot be described as a Benjamin bubble, even though an inviscid approximation is still valid. 
A maximum V for a fixed hLl and a maximum hL1 for a fixed V are defined from the properties 
of a hydraulic jump. 

THEORY 

(A) Outline of a physical model for a stationary slug 

A sketch of a stationary slug is given in figure 1. The pattern has three parts. The front of the 
slug, between stations 1 and 3, is pictured to be a hydraulic jump. The strong vortex formed in 
the jump entrains air which is broken into small bubbles. Some of these bubbles are recycled back 
into air space; others are carried by the liquid into the body of the slug between stations 3 and 
4. For simplicity, the flow in the slug body is considered to be uniform. At station 3, bubbles are 
distributed over the whole section except for a small region close to the bottom of the pipe. As 
the bubbles are carried downstream they rise upward and many are at the top of the pipe when 
they exit at the tail. The increase in velocity in the slug tail occurs in two stages. In the front part, 
the liquid height drops rather suddenly; a rapid acceleration of the liquid occurs so that inertia 
forces dominate and an inviscid approximation can be made. The downstream part of the tail is 
characterized by a gradual change in height, so that viscous effects associated with the resistance 
of the wall become important. 

This model for a stationary slug is quite similar to the model for a moving slug used by Ruder 
et al. (1989). It is anticipated that many of the results obtained in this paper could be applicable 
to a moving slug, when viewed in a coordinate system moving with the slug. The liquid velocity, 
UL1, is analogous to the difference in the slug velocity (which is close to the gas velocity) and the 
velocity of the slow liquid layer in front of a moving slug, C - UL1. 

(B) The hydraulic jump 

If the resistance of the wall is ignored the following equation is derived by writing a momentum 
balance between stations 1 and 3, with the assumption of plug flow and a uniform distribution of 
voids at station 3: 

PIA3 + pLU~tALI +pGU~I(A3 -- ALt ) + pGg(A3 -- ALl)hp¢ 2 COS • + pLgAL~h~t COS/~ + pl3gLi3A3 sin/~ 

= P3A3 + PLU2L3.A3(I - -  E3) "4- pGU23.,43£3 "t- PGe3gA3hpc3 cos fl -F pL(1 -- £3)gA3hpc3 COS 8, [2] 

Y 
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6 

Figure 1. Physical model of the stationary drag. 

UL6 ULI '~  . , . . . _ . - . ~  uL3 
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where Pi and P3 are pressures at the top of the pipe, RL and PG are the densities of liquid and air, 
e3 is the void fraction at station 3, ALl is the area of the liquid at station 1, A 3 is the pipe area, 
# is the angle of pipe inclination, Ll3 is the length from station 1 to station 3, hr~l, /%2 and h~3 
are the centroid heights for hydrostatic pressure in the liquid layer, the air pocket and the slug body 
respectively, Pl3 is the mixture density between stations and 1 and 3: 

Pl3 = [PL(  1 - -  £13) -t- pGEl3]; 

El3 is the average void fraction between stations 1 and 3. 
Conservation of mass for the liquid and the gas gives 

and 

ULl ALl = ULaA3(1 - -  E3) 

UGI (A 3 - -  ALl )U = UG3 A 3 E 3 = R A ,  

[31 

[41 

[5] 

where R A is the net rate at which air is entrained by the slug. The following relation for the pressure 
increase from the air pocket to station 3 due to the hydraulic jump is obtained by substituting [4] 
and [5] into [2]: 

PLg =gLa3 uL-(1-E3)u 3 + h I-(1-E3)h 3 cos# 

+ 
PLg 

[6] 

In this equation, the pressure drop associated with the force of gravity in the flow direction, 
pugLi3 sin #, is not included because the location of station 3 is not known exactly. This pressure 
drop is included as an independent item in the calculation of total pressure drop (see section E). 
For an air/water system, the last two terms in [6] are very small compared to the first two, so they 
can be neglected. 

(C) Flow characteristics of  an unaerated slug tail 

The presence of voids makes an exact analysis of the tail difficult. These bubbles are not 
uniformly distributed at the slug tail; they disrupt the interface where they erupt from the upper 
part of the tail; they are associated with irreversible effects. Consequently, an analysis was carried 
out by ignoring the presence of bubbles. The results are expected to represent a limiting behavior 
as the gas fraction approaches zero. Surprisingly, it is found that this simplified analysis represents 
observations with large voids. 

The gas space behind the slug is at constant pressure. For an inviscid flow the velocity of liquid 
increases from station 5 to station 6 along the free streamline because of the loss of potential energy 
associated with gravity. Ruder et al. (1989) ignored the influence of voids and used the model of 
a gravity current presented by Benjamin (1968), whereby station 5 is a stagnation point and the 
interface makes an angle n/3 with the top wall. They assumed this described a limiting behavior 
of a slug and called the tail, under these circumstances, a Benjamin bubble. 

For flow in a two-dimensional channel, the final height of the liquid downstream predicted by 
this theory is 

hL6 = 0.5B, [7] 

where B is the height of the channel. The downstream velocity of the liquid is 

UL6 = [8] 

and the volumetric flow of liquid shed by the tail is given by 

V = 0 . 5 B , c / ~ W ,  [91 
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where W is the width of the channel. For a pipe flow, 

hL6 = 0.563D, 

UL6 = 0 . 9 3 5 ~  

and 

[1o] 

[11] 

/gL4 B = UL6hL6 [14] 

and 

+1 B 2 l 2 P4 B "~ PLg COSfl--~pLghL6COSfl 
2 2 

=pLUL6hL6 -- pLUL4 B -- pLgL45B sin fl - pLg(1 -- e56)L56B sin ft. [15] 

Here, the pressure in the gas space behind the slug has been taken as zero, L45 is the length from 
station 4 to station 5 and E56 is the average void fraction between stations 5 and 6 in the slug tail. 

By applying Bernoulli's equation along the streamline from station 4 to station 5, the following 
is obtained: 

P4 1 2 l 2 = ~ pLUo -- ~ pLUL4 -- PLgL45 sin/3. [16] 

In the experiments, fl = 5 ° and cos fl ~ 1. If 1 - q6 is approximated by hL6/B, the following relation 
for UL6 is obtained by combining [14]-[16]: 

[g(B 2 - h~6) + Bu2o]B 2B  
t- gLs~ sin fl - -  [17] 

/'/L6 = (2B - -  hL6)hL6 2B - -  hE6" 

Equation [13] is substituted into [17] to eliminate u26, so that 

u 2 + 2 g ( B  -- hL6) [g(B 2 -- h~6) + Bu2]B . hL6 [181 
= (2B -- hL6)hL6 + gL56 sm fl 2B - -  hL6" 

Because sin f l [ h L 6 / ( 2 B  - hE6)] .~ 1, the last term in [18] can be neglected and a solution for hLs is 
obtained: 

hL6 = B + . [19] 

By substituting [19] into [13] and neglecting the last term in [13] (because the length of the first 
stage of the slug tail, L56, is < B and sin fl is very small), the following relation for ui~ is obtained: 

/gL6 = ~ "  [201 

V=  0542 ~D2 x / ~  [12] 
4 

These results are supported in extensive experiments by Zukowski (1966), who showed that the 
inclination angle of the pipeline has no influence on the motion of bubbles if it is < 3 ° and that 
the bubble velocity does change with the viscosity if the Reynolds number is large enough. 

The experiments with stationary slugs described in this paper show that [12] defines a lower liquid 
volumetric flow for which a slug could be formed. However, stationary slugs were also observed 
at larger V. If  the velocity profile at station 4 is assumed to be approximately uniform, the only 
way for the tail of the slug to behave as an inviscid flow under these conditions is for the starting 
point of the slug tail not to be a stagnation point. This could be justified on physical grounds if 
it is realized that the air emerges out of the tail at station 5 and that a thin film of air can exist 
at the top of the slug (see figure 11). 

The velocity at station 6 is now given as 

u[6 = u~ + 2 g ( B  - hL6)COS f l  + gL56 sin fl [13] 

for a rectangular channel, where u0 is the effective velocity at station 5, L56 is the length from station 
5 to station 6. Another relation for UL6 can be obtained by applying a mass and momentum balance 
between stations 4 and 6: 



A MODEL FOR STATIONARY SLUGS 481 

From [19] and [20] the volumetric flow is given as 

It is noted that hL6, V and u~ are the same as for a Benjamin bubble if u0 = 0. For u0 4= 0 the 
volumetric flow and the height at station 6 increase, while the velocity remains the same. The 
Froude number at station 6 is given as 

UL6 x / / n  
Fr6 = ~ = . 2\-1o.5 [22] 

and the Froude number inside the slug is 

UL4 = 0.5 + 0 . 5 - - .  u°2 [23] Fr4 - ~ gB 

For u0 = 0, hL6 = 0.5B, Fr6 = x/2 and Fr4 = 0.5, the liquid flow is supercritical in the slug tail and 
subcritical inside the slug. The maximum value of the effective velocity u0 would be ~ .  For 
this case, hL6 = B, Fr6 = 1 and Fr4 = 1; the liquid fills the whole channel. Normally, 0 < u0 < ~ ,  
0.5B < hL6 < B, 1 < Fr6 < x/~ and 0.5 < Fr 4 < 1.0. 

By carrying out the same analysis for a circular pipe, the following relation can be obtained when 
the influences of void fraction and inclination are neglected, as was done for a rectangular channel: 

~2(1- cos Q + r / c o s , -  (32-n) sin3 E + ~ 2 ( u ~  = 0, [24] 
\ g ~ /  

in which 

and 

E - 0.5 sin 2E 
= [251 

E= a r c o s I 2 ( h -  0.5)].  [26] 

Such an equation can be solved only by a numerical method. When u0 = 0, the Benjamin bubble 
solution is obtained. 

(D) Shape of the slug tail 

The shape of the tail in the region from station 5 to station 6, sketched in figure 1, can be 
calculated for a rectangular channel, with methods outlined by Benjamin (1968), by neglecting the 
influence of inclination and void fraction. As shown by von Karman (Yih 1965), the angle between 
the top of the channel and the free surface is ~/3. This inviscid solution gives a free surface that 
levels out to a constant value of hI6 = B/2 downstream. For a situation in which station 5 is not 
a stagnation point, the hL6 value calculated from [18] is larger than B/2. 

Farther downstream the flow has to adjust to the outlet condition, where hL < hL6, The change 
of height in this region is gradual so that shallow water theory can be used to simplify the 
momentum balance and the wall stress can be approximated by a pseudo-steady state assumption. 

For a two-dimensional channel, the momentum and mass balances are as follows (Dressier 1949; 
Miya et al. 1971): 

0u Tw Oh 
u . . . .  + g cos fl - g sin//~xx [27] 

OX pL h 

and 

Whu = V, [28] 
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Figure 2. Slug tail match (channel). 

where T~, is the average resisting stress at the wall. If u is eliminated between [27] and [28], the 
following equation for the height of the free surface is obtained: 

"C w 

dh - pL-'--h + g COS fl 
dx V 2 [29] 

g sin fl h3 W 2 

A solution of [29], using the Blasius equation to approximate Zw, is presented in figure 2 as the 
filled points. As shown in figure 1, y is the perpendicular distance from the top wall of  the channel, 
made dimensionless with the channel height, and x is the dimensionless distance along the channel 
starting from station 5. There is a region where neither the inviscid nor the shallow water 
assumption are valid. For simplicity, this is ignored and the two limiting solutions outlined above 
are simply matched at a location where they give approximately the same slope. 

For a circular pipe the flow is three-dimensional; a solution by conformal mapping is not, strictly, 
applicable. An approximate solution is obtained by treating the flow at the symmetry plane as if 
it were two-dimensional. Variables are made dimensionless using the diameter of  the pipe and the 
velocity UL4. From [I0] and [11] the dimensionless height and velocity at station 6 are given as 0.563 
and 1.725, respectively. The influence of  pipe inclination and void fraction is neglected, as was done 
in the analysis of a channel flow. From Bernoulli's equation 

u 26 = - 2 g y  6, [30] 

where Y6 = h L 6  - -  1. In order for [30] to give the desired values of  UL~ and h L 6  , dimensionless g must 
be given a value of  3.402. The interfacial shape is calculated by the same method used by Benjamin 
for a rectangular channel, except that " a "  is changed from 1.49 to 1.418 (because along the free 
surface the equation describing dimensionless q2 = u 2 +/32 changes from - 8 y  to -6 .805y)  and the 
function 

a Z  + 2 b Z :  

= 1 + c Z  + b Z  2 [31] 

changes to 

a Z  + 1.725bZ 2 
= l + c Z + b Z  2 [32] 

(because the dimensionless downstream velocity is now 1.725 rather than 2). The interfacial shape 
far downstream is, again, calculated using shallow water theory and the pseudo-steady state 
assumption. 

The open points in figure 3 are the inviscid solution for the front part of the tail and the filled 
points are the viscous solution for the back part. Again, matching is done at a point where the 
interfacial slopes for the two solutions are approximately equal. 
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Figure 3. Slug tail match (pipe). 

The important result displayed in figures 2 and 3 is that the matching occurs where hL6 is very 
close to the values given by [7] and [10]. This means that the procedure used by Ruder et al. (1989) 
of using only the inviscid solution to establish necessary conditions is reasonable. 

(E) Pressure drop in a pipe 

The pressure drop over the stationary slug in a pipe is considered as being composed of four 
components: the pressure change associated with the hydraulic jump in the front, APh; a frictional 
pressure drop in the body of the slug, APf; the pressure rise associated with the velocity change 
from station 4 to station 5 at the slug tail, APt; and the pressure drop to support the weight of 
the slug due to pipe inclination, AP s. Thus the total pressure change is given as 

APT ---- APh "t" APt -I- AP s - APf. [33] 

The pressure drop associated with the hydraulic jump is given by [6]. It is usually much larger 
than APf and APr. The pressure drop in the body of the slug is pictured as mainly resulting from 
the force of gravity due to pipe inclination, APs, and the frictional drag at the wall, APf. The former 
is 

AP s = g[pL(1 -- ~3) + Po~3]Ls sin t ,  [34] 

where Ls is the slug length (from station 2 to station 5). 
The pressure drop due to the frictional drag at the pipe wall is 

%TcDL 
APf m - -  [35] 

A3 

When calculating ~w, there is a question as to what is the effective density. Dukler & Hubbard 
(1975) suggested a mixture of density 

p = pL(1 -- ~3) + pOE3. [36] 

Other researchers (Singh & Griffiths 1970; Bonnecaze et al. 1971) suggested that/7 = PL. In this 
research, PL is used. The wall stress is then approximated with the Blasius equation as follows: ()0 0 

% = 0.046 D PL 1.8 !~ L 2 UL3' [37] 

where VL is the kinematic viscosity of the liquid. For stationary slugs, APf is found to be small 
enough to be neglected. 

The pressure drop AP, is approximated by applying Bernoulli's equation along the streamline 
between stations 4 and 5 at the top of the pipe, so that 

A P r  P5 P4 ffi ½ pL U2L3 1 2 [38] _~. - -  - -  ~ PL UO . 
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In fact, the gas and liquid flow at the top of  the pipe are very chaotic and the void fraction could 
be very large. Surprisingly, it is found when the liquid density, PL, is used in Bernoulli's equation 
that APr calculated from [38] is very close to that measured in experiments. For Uo = 0, the tail of  
the stationary slug is a Benjamin bubble. If  it is assumed that the volumetric flow out of the tail 
is given by [4], then, from conservation of mass, 

0.542  [39] 
UL3 - -  (1 - -  £3) 

and 

A P r  = 1 2 O ' 1 4 7 p L g D  
~pLUL3 = (1 -- E3)2 [40] 

For u0 :~ 0, APt will be less than given by [40]. 

(F) Necessary conditions for the existence of an unaerated stationary slug 

It has been shown that, if the influence of void fraction is neglected, the volumetric flow out of  
the tail is a minimum when the slug tail can be described by a Benjamin bubble. For a channel, 
this minimum is given by [9] and it equals the volumetric flow in the liquid layer in front of  the 
stationary slug, so that 

hL~ ULI 
= 0.5. [411 

The existence of a slug is also limited by the requirement that the energy dissipation is positive, 
as suggested by Ruder et al. (1989); this leads to the condition 

UL----L-1 > 1. [42] 

Equations [41] and [42] are represented by curves 1 and 3 in figure 4. It should be noted that these 
two lines intercept at hL1/B = 0.5. At this condition both the front and the tail of  the slug are 
Benjamin bubbles. Curves 1 and 3 define the necessary conditions for the existence of a stationary 
slug in a channel. Similar results were also obtained for a pipe flow by Ruder et al. (1989)---these 
are represented by curves 1 and 2 in figure 5. 

h L 1  | [ I I ) ' '  ' ' ' I  I ) ' 
--D--~- [ ~  I. Benjamin bubble model(lower limit) - 

| [ ~  2. Upper  ld?ifitning zero energy dissipation_- 

: 
1.0 10.0 

Figure 4. Slug flow regime in a channel. 

F,.*L---a.I 
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Figure 5. Slug flow regime in circular pipes:&, 5.09 em i.d. pipe; O, 2.50 em i.d. pipe. 

Differences in the flow characteristics of stationary slugs in a channel and a pipe are emphasized 
when an upper limit for the liquid flow is explored. For a two-dimensional channel, the 
analysis in section C reveals that U L 4 / ~  = 1 requires that the liquid fill the whole channel at 
the tail. This leads to the limiting condition 

UL4 
- -  > 1, [43] 

which is represented by curve 2 in figure 4. The same result can be obtained by applying the 
conservation equations between stations 4 and 6 and requiring that the dissipation of mechanical 
energy is positive or zero. 

A condition similar to [43] cannot be obtained for a stationary slug in a pipe, either from [24] 
or from the requirement that energy dissipation is positive. For example, the last condition requires 
that 

1 - 2 hL6 + 2 AL6h~6 
U~4 d AL4D 
- -  < [44] 
g D ( A L 4 )  6 

As ht~ approaches D, the denominator in [44] approaches zero much faster than the numerator, 
so u~4/gD does not appear to have an upper limit if aeration is ignored. 

For a rectangular channel, a Froude number with exact physical meaning is used to describe the 
hydraulic jump, as in section C. Several different definitions of Froude number have been used for 
a flow in a pipe (Benjamin 1968; Kouba & Jepson 1989). The Froude number characterizing the 
liquid flow in this research is based on the pipe diameter, 

F r =  uu [45] 

so that the results presented can be compared with the study of moving slugs presented by Ruder 
et al. (1989). 

Ruder & Hanratty (1990) explored the possibility that curve 2 in figure 5 would represent a 
transition to plug flow for gas/liquid flow in a pipeline. They found that this is, indeed, a necessary 
condition for the existence of slugs but that the actual breakdown of a slug occurs at slightly higher 
Froude numbers. At Fr = (C - UL1 ) / ~  = 1.2, the gas space was found to resemble a symmetric 
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bubble and at Fr = 2 the hydraulic jump in the front slug took the appearance of a staircase. Here 
C is the velocity of the slug and UL~ is the velocity of the liquid in the carpet in front of the slug. 
The term (C - ULj) is the velocity of the liquid seen by an observer moving with the slug. It is 
analogous to the UL] defined for a stationary slug. 

Observations of stationary slugs also show that the hydraulic jump at the front of the slug is 
initiated at higher Froude numbers than given by curve 2 in figure 5. Experiments performed for 
the conditions represented by curve 1 in figure 5 reveal that with decreasing Fr = U L ~ / ~ ,  the 
pressure increase associated with the hydraulic jump decreases and that the degree of aeration 
decreases. At a small enough Froude numbers, aeration ceases and, at Froude numbers slightly 
below this value, the pressure change in the front of the slug becomes zero. This condition of zero 
pressure increase was explored as a stablilty condition for a hydraulic jump. The physical notion 
behind this is that the vortical motion behind the jump should be associated with an unfavorable 
pressure gradient along the top wall. 

In a two-dimensional channel the pressure drop over a hydraulic jump is given by 

(APpLg)h =l_g ( ~  u~l--u~.3 ) +  (~ '  hL~2 B) [46] 

if there is no aeration and the influence of inclination is neglected. The mass balance is 

ULI hLl = UL3B [47] 
and, if the tail is a Benjamin bubble, 

UL 3 m- 0 . 5 ~ .  [48] 
If [47] and [48] are substituted into [46], the following conditions are obtained for (AP)h = 0: 

(~f f )  = 0.366 [49] 

and 

ULI ---- 1.366. [50] 

In a similar way, conditions for (AP)h = 0 for a pipe, can be developed: 

hL___~l = 0.4456 [51] 
D 

and 

ULI = 1.2579. [52] 

It is noted that [52] is independent of pipe diameter and corresponds closely to the condition where 
Ruder & Hanratty (1990) observed the formation of a symmetric gas bubble. 

For hL~/D larger than that required for the tail to be a Benjamin bubble, the condition 
AP h = 0 requires a slightly smaller UL~/X/~ than given by [52]. This is represented by curve 3 in 
figure 5. If the criterion (AP)h > 0 is correct, then slugs could exist only to the right of curves 2 
and 3 in figure 5. 

EXPERIMENTS 

Experiments were carried out in Plexiglas pipes, with i.d. = 5.09 and 2.50 cm, which were inclined 
downward to make it possible to create stationary slugs. If a horizontal pipe is used a hydraulic 
jump can be formed, but the liquid fills the cross section downstream of the jump over the whole 
length of the pipe. During these experiments, the inclination angle was chosen as 5 ° . The flow loop 
is shown in figure 6. The liquid flow rate was measured by the rotameter 5. At the inlet of the test 
section, the pipe was linked to air tank 2 to keep the pressure at the front of the slug at a constant 
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Teflon body Glue 0.254mm Platinum wire 

Figure 7. The probe used in voidage measurements. 

value during the experiments and to supply the slug with the air which is needed for aeration. 
A sliding gate was inserted into the pipe to control the height of the liquid layer in the front of 
the slug. 

In order to control the air pressure behind the slug, air was supplied to the liquid storage tank. 
The only exit for the air was through a tube partially submerged into another water-filled tank that 
is called a pressure adjuster. By changing the height of the tube, the pressure in the back of the 
slug can be adjusted. 

After water was supplied to the pipe and the part of the pipe before the test section filled up 
with water, valve 6 was quickly opened to produce a rapid increase in water flow rate. In this way, 
a slug was created in the pipe. When the slug has just been created, the liquid flow rate is usually 
larger than the minimum value given by [1]; the tail is not a Benjamin bubble. Then, the liquid 
flow rate is carefully decreased. When the liquid flow rate is lower than a certain value, the slug 
will suddenly collapse. 

The height of the liquid layer in front of the slug was measured by a contact probe. The pressure 
distribution along the slug was measured both at the top and at the bottom of the slug. When taking 

Figure 8. The voidage test section. 
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photographs of the slug, a Plexiglas box filled with water covered the outside of the pipe. In this 
way, distortion due to the difference in the refractive indices of water and Plexiglas was greatly 
decreased. 

An electric-resistance method was used to determine the void fraction of air inside slugs 
(Herringe & Davis 1974; Serizawa et al. 1975; Thang & Davis 1979). The probe used in this 
experiment is shown in figure 7, and the setup for the measurement in figure 8. The probe is inserted 
into the slugs. There are two brass rings before and behind the probe. The probe and the brass 
rings were connected to a frequency counter and a square-wave generator to form an electric circuit. 
When a bubble is not on the probe the square-wave signal produced by the generator can go to 
the frequency counter through the probe, water and brass rings. When a bubble arrives at the 
probe, the electric circuit is broken. By counting the fraction of the time the circuit is broken, the 
local void fraction inside the slug can be obtained. The average void fraction was obtained by 
integrating the local void fraction over the cross section of the pipe. 

RESULTS 

(A) Slug tail shape 

Figure 9 is a photograph of a slug tail when the liquid flow rate was kept at the shedding rate 
for a Benjamin bubble and F r ~  1.7. Under this flow condition, there is no aeration in the slug. 
Figures 9 and 3 are in almost perfect agreement, which means that the front of the slug tail can 
be represented as a Benjamin bubble. 

However, in most situations, there is always some aeration in the slug due to the hydraulic jump 
in the front of the slug. Figure 10 is a photograph of a slug tail taken when Fr~2.5 .  The liquid 
flow rate was equal to the shedding rate for a Benjamin bubble and the void fraction inside the 
slug was about 0.13. Under such a flow condition, unsteady waves occur at the slug tail; bubbles 
flow with the liquid out the back of the slug, especially at the top. However, the tail still keeps 
the basic characteristics of a Benjamin bubble. The angle between the free surface of the liquid and 
the top wall of the pipe is nearly equal to rt/3 and the height of the free surface decreases, on 
average, at the same rate as a Benjamin bubble. Even though a large amount of bubbles collected, 
the liquid still touched the top of the pipe. Figure 11 is a photograph of a slug tail when Fr = 2.5 
and the liquid flow rate is 12% larger than the shedding rate for a Benjamin bubble. Under these 
conditions, the void fraction is the same as for the experiment in figure 10. However, the shape 
of the slug tail is different from that of a Benjamin bubble, especially at the beginning of the tail. 
A slipping regime exists in which a thin layer of air is formed between the top wall of the pipe 
and the liquid. The liquid departs very gradually from the top wall of the pipe, initially, and then 
drops much more quickly. The final height of the tail is also larger than for the slug shown in figure 
10. Slugs for which the tail is not a Benjamin bubble were obtained by increasing the liquid flow 
rate while keeping the height of liquid layer in front of the slug constant. This caused an increase 
in the liquid velocities UL~ and UL3. The increase in ULI is much larger than the increase in UL3. From 
[6], it can be seen that the pressure increase associated with the hydraulic jump increases and the 
pressure increase at the rear, APt, decreases because of the occurrence of a relative velocity, uo (see 
[38]). This is associated with a larger flow out at the tail. 

(B) Pressure drop over the stationary slug 

Figure 12 presents measurements of the pressure distribution along a slug, both at the top and 
at the bottom when the liquid flow rate is kept at the shedding rate for a Benjamin bubble and 
Fr = 2.7. As is indicated, there are two sharp increases in the pressure at the top of the slug. The 
one in front of the slug is associated with the hydraulic jump; the one at the rear is interpreted 
as being associated with a flow stagnation at the beginning of the slug tail. When the height of 
the liquid film at station 1 was decreased and the liquid flow rate was kept at the shedding rate 
for a Benjamin bubble, the Froude number increased and the aeration became stronger. Many 
bubbles concentrate on the top of the slug, especially at the rear. Table 1 lists the average void 
fraction measured in the experiments, the measured pressure drop at the rear of the slug and the 
pressure drop calculated from [40], when the tail of the slug is a Benjamin bubble. When Fr > 215 
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Figure 9. An unaerated slug tail (Fr = 1.7). 

Figure 10. A strong aerated slug tail (Fr = 2.5) at the minimum volumetric flow. 

Figure 11. A non-Benjamin bubble slug tail at a liquid flow that is 12% larger than the minimum. 
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Figure 12. Pressure distribution along the slug (Fr = 2.7). 

the aeration becomes strong and the void fraction becomes large, but the measured pressure 
increase at the rear of the slug is still close to that calculated from [40]. This supports the notion 
that the starting point of the slug tail could be considered to be a stagnation point under these 
flow conditions. However, the reason why void fraction does not influence the application of 
Bernoulli's equation along the top wall of the pipe is not understood. 

Figures 13 and 14 give comparisons between measured and calculated pressure drops over the 
whole slug when the liquid flow rate was kept at the shedding rate for a Benjamin bubble. Table 2 
lists the pressure drops measured in the experiments and calculated from the theory when the liquid 
flow rate is larger than the shedding rate for a Benjamin bubble. The good agreement between 
measurements and calculations supports the model presented for a stationary slug. 

(C) Slug flow regime 
If a slug is created in the pipe, and the flow rate of liquid is decreased, the slug will disappear 

when the flow is below a minimum value. It is suggested in the theory section that this minimum 
is equal to the shedding rate of a Benjamin bubble, 

nD 2 
(Vs)r~n = 0.54 T x / ~ ,  [53] 

if the influence of aeration can be ignored. As seen in figure 5, the critical flows agree exactly with 
[52], even though the aeration can be large and the void fraction may be >0.3. This result is 
consistent with what Ruder et al. (1989) obtained in studies of a pipeline with i.d. = 9.53 cm. In 
their experiments, the largest void fraction was >0.3, and the largest Froude number was about 
8. This indicates that, under their experimental conditions, aeration does not affect the minimum 
shedding rate of liquid at the slug tail, i.e the limiting condition for the existence of a slug. 

When the flow rate of liquid is increased, the height of the liquid at station 6 and the slug length 
increase. However, the liquid was not found to fill the whole space of the pipe, even for liquid flows 
that are three times as large as the shedding rate for a Benjamin bubble in the 2.5 cm pipe. This 
result supports the notion that there is no upper limit for the existence of a stationary slug in a 
circular pipe. 

Table 1. Pressure drop at the rear of the slug when the shedding rate is the same as for a Benjamin 
bubble 

hLl/D 0.392 0 . 3 7 1  0.360 0.348 0.306 0.282 0 . 2 6 7  0 . 2 4 7  0.230 
ULI/~ 1.741 1.809 1 . 8 8 4  2 . 1 0 9  2 . 3 2 1  2 . 5 1 5  2.696 2 . 8 0 4  2.854 
(l -- ~3) 1.000 0.990 0.964 0.934 0.880 0.834 0 . 8 1 1  0.790 0.768 
(APt).ru 0.147 0.150 0.158 0 . 1 6 8  0.190 0 . 2 0 8  0.224 0 . 2 3 5  0.248 
(APr) ~ 0.156 0.156 0 . 1 6 1  0.175 0 . 1 9 8  0 . 2 1 3  0 . 2 3 5  0.238 0.245 

AP stands for AP/pLgD. 
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Figure 13. Pressure drop over slugs in the 5.09 cm i.d. pipe. 

The analysis of section F showed that, when 

uL~ 
hL_~ = 0.4456 and Fr = ~ = 1.2579, 
D ,/gD 

the pressure drop due to a hydraulic jump, (AP)h, becomes zero. This was suggested as a possible 
criterion for the transition from slug to plug flow. During the experiments, it was found that when 
the height of the liquid layer at station 1 is about 0.44D and Fr ~. 1.26, no aeration occurs in the 
front of the slug. The shape of the slug front is very similar to that of the slug tail, and the slug 
often divides into two consecutive slugs giving an air space between them that looks like a 
symmetric pocket. With a continued increase in the height of the liquid layer at station 1, there 
will be several places in the pipe at which the liquid blocks the pipe and several air pockets. The 
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Figure 14. Pressure drop over slugs in the 2..S0cm i.d. pipe, 
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Table 2. Comparison between the pressure drop measured in the experiments and that calculated from 
the theory when the shedding rate is larger than for a Benjamin bubble 
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5.09 em pipe 2.50 cm pipe 

hLi/D ULI/N//~ (AP)Th (AP)~t /ILl/'~ 14LI/~ (AP)Th (Ae)]~t 
0.348 2.041 1.257 1.214 0.238 3.153 1.316 1.432 
0.306 2.198 1.318 1.285 0.208 4.872 2.095 2.312 
0.348 2.355 1.591 1.593 0.184 6.189 2.814 2.954 
0.306 2.512 1.965 1.892 0.151 7.087 3.404 3.483 
0.306 2.669 2.154 1.902 0.151 7.984 4.002 4.077 
0.282 2.826 2.234 2.286 0.151 8.032 4.061 4.174 
0.306 2.932 1.837 1.884 0.129 9.921 5.723 5.714 
0.267 2.893 2.191 2.225 0.129 10.97 6.129 6.839 
0.247 3.351 2.357 2.381 0.129 11.81 7.032 7.207 
0.247 3.770 2.781 2.877 . . . .  

AP stands for AP/pLgD. 

flow of liquid becomes very unsteady even though the pressure at the discharge is kept constant. 
The behavior is cyclical. At first, some long liquid blocks are formed at the upper part of the pipe. 
These, then, divide into shorter liquid blocks and flow down the pipe, while long liquid blocks form 
again at the upper part of the pipe. The pressure drop over these liquid blocks is too small to 
measure, so they cannot be considered as normal steady stationary slugs. It is felt that their 
appearance represents the transition from slug to plug flow observed for gas/liquid flow in a pipe. 

CONCLUSION 

Experiments and theory confirm previous results that the front of a stationary slug is a hydraulic 
jump and show that the liquid height at the rear may be considered to decrease in two stages, a 
rapidly changing inviscid flow and a slowly changing viscous flow. For a given height at the front 
of the slug, the first stage of the slug tail is a Benjamin bubble if the volumetric flow rate of liquid 
is the minimum required for slugs to exist. This conclusion holds even when the slug is highly 
aerated. 

At liquid flows above this minimum the first part of the slug tail does not behave as a Benjamin 
bubble. It is observed that under these conditions a thin film of air exists at the top of the slug. 
The results can be explained if the condition that a stagnation point exists at the top of the tail 
is abandoned. It is argued that this type analysis is consistent with the observation of an air layer. 

The observation that a Benjamin bubble exists at the minimum volumetric flow suggests for 
increasing Fr = UL~/X/~ that a lower value of hLt/D is needed for the existence of a stationary 
slug. The conditions that the energy_ dissipation and the pressure drop in a hydraulic jump must 
be positive set lower values of U L I / ~ ,  for all hLl/D, needed for the existence of a hydraulic jump. 

Pressure drop measurements over slugs confirm the simple model developed for a stationary slug. 
It is surprising that the pressure change at the rear of the slug, measured under conditions of severe 
aeration, agrees with the simple theory that uses a Bernoulli equation at the top wall of the pipe. 

The results of this study lend support to theory used to define minimum values of hLl/D required 
for the existence of slugs in a pipeline flow by Ruder et al. (1989). The condition that the pressure 
change in the hydraulic jump must be positive could explain the transition from a slug to a plug 
flow regime observed in pipeline flows by Ruder & Hanratty (1990). 
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